skip to main content


Search for: All records

Creators/Authors contains: "Marques, Nubia"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. null (Ed.)
    Intensive agriculture alters headwater streams, but our understanding of its effects is limited in tropical regions where rates of agricultural expansion and intensification are currently greatest. Riparian forest protections are an important conservation tool, but whether they provide adequate protection of stream function in these areas of rapid tropical agricultural development has not been well studied. To address these gaps, we conducted a study in the lowland Brazilian Amazon, an area undergoing rapid cropland expansion, to assess the effects of land use change on organic matter dynamics (OM), ecosystem metabolism, and nutrient concentrations and uptake (nitrate and phosphate) in 11 first order streams draining forested (n = 4) or cropland (n = 7) watersheds with intact riparian forests. We found that streams had similar terrestrial litter inputs, but OM biomass was lower in cropland streams. Gross primary productivity was low and not different between land uses, but ecosystem respiration and net ecosystem production showed greater seasonality in cropland streams. Although we found no difference in stream concentrations of dissolved nutrients, phosphate uptake exceeded nitrate uptake in all streams and was higher in cropland than forested streams. This indicates that streams will be more retentive of phosphorus than nitrogen and that if fertilizer nitrogen reaches streams, it will be exported in stream networks. Overall, we found relatively subtle differences in stream function, indicating that riparian buffers have thus far provided protection against major functional shifts seen in other systems. However, the changes we did observe were linked to watershed scale shifts in hydrology, water temperature, and light availability resulting from watershed deforestation. This has implications for the conservation of tens of thousands of stream kilometers across the expanding Amazon cropland region. 
    more » « less
  2. Abstract

    The forests of southeastern Amazonia are highly threatened by disturbances such as fragmentation, understory fires, and extreme climatic events. Large‐bodied frugivores such as the lowland tapir (Tapirus terrestris) have the potential to offset this process, supporting natural forest regeneration by dispersing a variety of seeds over long distances to disturbed forests. However, we know little about their effectiveness as seed dispersers in degraded forest landscapes. Here, we investigate the seed dispersal function of lowland tapirs in Amazonian forests subject to a range of human (fire and fragmentation) and natural (extreme droughts and windstorms) disturbances, using a combination of field observations, camera traps, and light detection and ranging (LiDAR) data. Tapirs travel and defecate more often in degraded forests, dispersing much more seeds in these areas [9,822 seeds per ha/year (CI95% = 9,106; 11,838)] than in undisturbed forests [2,950 seeds per ha/year (CI95% = 2,961; 3,771)]. By effectively dispersing seeds across disturbed forests, tapirs may contribute to natural forest regeneration—the cheapest and usually the most feasible way to achieve large‐scale restoration of tropical forests. Through the dispersal of large‐seeded species that eventually become large trees, such frugivores also contribute indirectly to maintaining forest carbon stocks. These functions may be critical in helping tropical countries to achieve their goals to maintain and restore biodiversity and its ecosystem services. Ultimately, preserving these animals along with their habitats may help in the process of natural recovery of degraded forests throughout the tropics.

    Abstract in Portuguese is available with online material.

     
    more » « less